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We present the results of a modeling study of the three-dimensional current density in single-carrier
sandwich-type devices of disordered organic semiconductors. The calculations are based on a master-equation
approach, assuming a Gaussian distribution of site energies without spatial correlations. The injection-barrier
lowering due to the image potential is taken into account, so that the model provides a comprehensive
treatment of the space-charge-limited current as well as the injection-limited current �ILC� regimes. We show
that the current distribution can be highly filamentary for voltages, layer thicknesses, and disorder strengths
that are realistic for organic light-emitting diodes and, that, as a result, the current density in both regimes can
be significantly larger than as obtained from a one-dimensional continuum drift-diffusion device model. For
devices with large injection barriers and strong disorder, in the ILC transport regime, good agreement is
obtained with the average current density predicted from a model assuming injection and transport via one-
dimensional filaments �A. L. Burin and M. A. Ratner, J. Chem. Phys. 113, 3941 �2000��.
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I. INTRODUCTION

Organic semiconductors are presently used in a wide va-
riety of devices, such as organic light-emitting diodes
�OLEDs�,1 organic field-effect transistors,2 and organic pho-
tovoltaic cells.3 In these materials, which are often amor-
phous or near amorphous, an important role is played by
disorder: it contributes to the localization of electronic states
and strongly influences the hopping rates of the charge car-
riers between the localized states. Our understanding of de-
vices based on disordered organic semiconductors within
which hopping conduction takes place is far less developed
than our understanding of transport in devices based on crys-
talline inorganic semiconductors.

The disorder in organic semiconductors used in OLEDs is
often modeled by assuming that the on-site energies are ran-
dom variables, taken from a Gaussian density of states
�DOS�. Monte Carlo �MC� simulations of the hopping trans-
port of single carriers �the low carrier-density Boltzmann
limit� in a Gaussian DOS were performed by Bässler and
co-workers,4,5 showing a non-Arrhenius temperature depen-
dence ��exp�−c�̂2� of the charge-carrier mobility �, with
�̂�� /kBT, T the temperature, kB the Boltzmann constant, �
the width of the Gaussian DOS, and c a numerical factor.
This work is usually referred to as the Gaussian disorder
model �GDM�. For the dependence on the electric field, F, a
Poole-Frenkel ��exp���F� behavior was found, in a limited
field range, where the factor � depends on temperature. Gart-
stein and Conwell6 pointed out that a spatially correlated
potential for the charge carriers is needed to better explain
experimental data. These data suggest the existence of Poole-

Frenkel behavior in a rather wide region of field strengths.
Their work led to the introduction of the correlated disorder
model. Several possible causes for this correlation were
given, such as the presence of electric dipoles7,8 or �in the
case of polymers� thermally induced torsions of the polymer
chains.9

For a long time, it has been known that the mobility in
disordered inorganic10 and organic11 materials is not only a
function of the temperature and electric field but also of the
carrier density. This dependence has to be accounted for at
densities for which state-filling effects are important. The
independent-carrier assumption, made in the MC simulations
by Bässler and co-workers,4,5 is then invalid and the mobility
increases with increasing carrier density, as the occupation of
the deepest states by a certain fraction of the carriers reduces
the effect of these states as trapping centers. For the case of
a Gaussian DOS, this effect occurs for concentrations �ratio
of the carrier density to the site density� larger than
ccrossover= �1 /2��exp�−�̂2 /2�. Schmechel12 argued that the
resulting enhancement of the mobility in a Gaussian DOS
could explain the mobility in disordered doped injection lay-
ers used in OLEDs, in which the carrier concentrations are
very high. Using the results of a computational study of the
T, F, and nh �hole density� dependences of the hopping mo-
bility in a Gaussian DOS, Pasveer et al.13 showed that the
effect can even provide a good quantitative explanation for
the concentration dependence of the hole mobility and the
occurrence of a crossover density, which were discovered
experimentally by Tanase et al.14 for hole-only devices
based on the undoped semiconducting polymer
poly�p-phenylenevinylene� �PPV�. The experimental
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temperature-dependent current density versus voltage �J�V��
curves of sandwich-type hole-only devices could be ex-
plained without invoking a correlation between the site
energies.13 At room temperature, the density dependence of
the mobility was found to be much more important than the
electric-field dependence. The version of the GDM presented
in Ref. 13, which takes into account both the dependence of
the mobility on the carrier density and the electric field, will
be called the extended Gaussian disorder model �EGDM�.

Coehoorn et al.15 showed that the carrier density and tem-
perature dependence of the mobility obtained from the nu-
merically exact master-equation approach in Ref. 13 are con-
sistent with the results obtained from various existing
semianalytical models for transport in disordered
materials11,16,17 and that in other models18,19 a simple but
important correction �to more properly take into account the
percolative nature of the transport� is sufficient. The similar-
ity of these models was explained by their common notion of
critical hops on a percolating path that determine the size of
the current.

In this paper, we investigate the effects of disorder on the
transport through complete devices. It is already well known
that the percolative nature of the transport in a disordered
organic semiconductor leads to a strongly filamentary struc-
ture of the current along the percolation paths.20–24 This
raises the question to what extent one-dimensional �1D� con-
tinuum drift-diffusion device models, within which the cur-
rent density is assumed to be laterally uniform, provide ac-
curate predictions of the J�V� curves. It is important to
answer this question because such 1D models are numeri-
cally much more efficient than complete three-dimensional
�3D� device models and are the obvious choice in modeling
the complex multilayer structures that will be used in com-
mercial OLEDs. We address this question by making a de-
tailed comparison between the current densities obtained
from a full 3D master-equation model for the hopping trans-
port in single-layer single-carrier sandwich-type devices and
the current densities obtained from a 1D continuum drift-
diffusion device model. The 1D model that we will use is
based on the EGDM. It is an extension of an approach intro-
duced in Ref. 25 to include the effective injection-barrier
lowering due to the image-potential effect. Earlier work on
PPV-based polymers revealed no necessity to take correlated
disorder into account,13 such as is done in the work of Tutiš
et al.21 These authors used a master-equation model for cal-
culating the current density in the case of correlated disorder
for the situation that the current is limited by injection, tak-
ing the image potential into account but neglecting space-
charge effects.

We show that the 1D continuum model used in this paper
provides for various cases of interest quite accurate predic-
tions of the voltage dependence of the current density. How-
ever, we also find a distinct offset of the current for relatively
large disorder ��̂=6� and a small layer thickness �22 nm�.
The filamentarity of the current density is then quite pro-
nounced. We present visualizations of the three-dimensional
current density and discuss the effects of the filamentary na-
ture of the current density in the case of strong disorder on
the current density in the space-charge-limited current
�SCLC� and injection-limited current �ILC� transport re-

gimes. Our 3D model will allow us to analyze the appropri-
ateness of various previously proposed models for charge-
carrier injection in OLEDs. In view of the focus, in a large
part of this paper, on the issue of charge-carrier injection, we
give in the remainder of this introduction a brief review of
these models.

Within the simplest approach to the problem of carrier
injection and subsequent transport in organic semiconductor
devices it is assumed that the charge carriers in the organic
semiconductor at the contact are in thermal equilibrium with
the electrons in the metal electrode. The presence of an in-
jection barrier, �, then reduces the density of carriers at the
contact with the metal, nc, to a value given by nc=Nt /
�1+exp�� /kBT��, with Nt the total density of molecular sites.
Here, � is defined as the �positive� energy difference be-
tween the Fermi energy in the metal and the energy of the
highest occupied molecular orbital or lowest unoccupied mo-
lecular orbital states in the semiconductor. The current den-
sity is obtained by self-consistently solving the drift-
diffusion equation, taking the space charge in the device into
account and using nc as a fixed boundary condition. For the
case of a constant mobility and diffusion coefficient, this
boundary-value problem can be solved analytically.26 In a
symmetric device �equal left and right contacts� the current
density is then injection limited if nc�n0��kBT / �e2L2� or
smaller, with � the dielectric constant, e the elementary
charge, and L the device thickness. For L=100 nm, Nt
=1027 m−3, and a relative dielectric constant �r=3 �a typical
device�, the injection-limited transport regime therefore sets
in �at room temperature� around ��0.4 eV. For larger in-
jection barriers, the space charge in the device can be ne-
glected and the carrier density is uniform and equal to nc.
The injection-limited current density is then given by JILC
=enc�V /L.

For two reasons the problem of carrier injection in organic
semiconductors is more complicated than assumed in the
model discussed above. First, the model neglects the image-
charge interaction between an individual charge and its im-
age charge in the electrode. In the SCLC regime, the image-
charge effect is to a certain extent taken into account by
self-consistently solving the Poisson equation for the layer-
averaged charge density. In that regime, the resulting error is
small. However, in the ILC regime the actual injected charge
at a specific site associated with one carrier is one electronic
charge at that site, which is much larger than the layer-
averaged charge at sites in the same layer. The effect of the
image potential on the current density in the ILC regime has
been studied by Emtage and O’Dwyer,27 and more recently
by Scott and Malliaras28 and by Masenelli et al.29 Effec-
tively, it leads to a lowering of the effective injection barrier
with increasing voltage.

Second, all models discussed so far neglect the effects of
energetic disorder. Its relevance to the injection process in
OLED-type devices was first noted by Gartstein and
Conwell,30 who studied the combined effects of the image
potential and the Gaussian disorder in the ILC regime using
a MC simulation. These authors showed that disorder can
give rise to a strongly enhanced field dependence of the
injection-limited current density. Arkhipov et al.31 developed
a semianalytical 1D approach to this problem. For relatively
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high temperatures and small disorder good agreement was
found with the results of MC calculations.32 As a result of the
injection in tail states, the ILC in a material with a Gaussian
DOS was predicted to be larger than the ILC in an ordered
material, for a given value of �, and its decrease with de-
creasing temperature was predicted to be smaller. The latter
effect was confirmed by van Woudenbergh et al.33 from an
experimental study of the ILC in PPV-based devices. Burin
and Ratner �BR� �Ref. 34� studied this problem by assuming
that for sufficiently high field strengths and in the ILC re-
gime the injection and transport occur through 1D straight
paths, effectively lowering the injection barrier. Recently,
support for the latter model has been obtained from a mea-
surement using electric-force microscopy of the potential
drop near the injecting contacts in a lateral two-terminal
metal/organic/metal device.35 As noted already by the
authors,32 it is expected that the Arkhipov model underesti-
mates the stochastic nature of the carrier motion in the vicin-
ity of the barrier, when at high fields only a few rare easy
pathways dominate the current density. On the other hand,
the BR model will overrate this effect, in particular for rela-
tively small fields, when more easy nonlinear trajectories are
neglected. These weaknesses of the Arkhipov and BR mod-
els are confirmed by the 3D modeling results presented in
this paper.

The paper is built up as follows. Sections II A and II B
discuss the 3D master-equation method and the 1D con-
tinuum model, respectively, used for calculating the current
density in single-carrier devices. In Sec. III we present the
results of the 3D master equation and 1D continuum model-
ing of the voltage dependence of the current density. In Sec.
IV we investigate the 3D structure of the current distribution
and discuss the consequences of this structure for the validity
of different models: our 1D continuum model, the BR model,
and the Arkhipov model. Section V contains a summary and
conclusions.

II. THEORY AND METHODS

A. Three-dimensional master-equation model

In this section the 3D master-equation method is de-
scribed for calculating the current density in single-carrier
devices, consisting of a single organic layer that is sand-
wiched in between two metallic electrode layers. The device
is modeled as a three-dimensional cubic mx�my �mz lattice
with an intersite distance a. Lattice sites will be denoted by
i��ix , iy , iz	. The applied field is directed along the x axis,
and the planes formed by the sites at ix=1 and ix=mx are
viewed as the metallic injecting and collecting electrode
planes, respectively. The sites at all other planes will be
called “organic sites.” Along the lateral �y and z� directions
periodic boundary conditions are applied. Every site repre-
sents a localized state and the carrier occupation probability
on a site i will be denoted by pi.

We assume that conduction in the organic semiconductor
takes place by hopping of charge carriers from one localized
site to another, as a result of a tunneling process that is ther-
mally assisted due to the coupling to a system of acoustical

phonons. This leads to a hopping rate from site i to j of the
Miller-Abrahams form36

Wij = �0 exp
− 2	Rij −
Ej − Ei

kBT
� for Ej 
 Ei, �1a�

Wij = �0 exp�− 2	Rij� for Ej � Ei, �1b�

where �0 is an intrinsic rate, Rij��Rj−Ri� is the distance
between sites i and j, 	 is the inverse localization length of
the localized wave functions, and Ei is the energy of the state
at site i. For simplicity, we assume that the hopping rates
from the electrode sites to the organic sites and vice versa are
given by the same expression �Eq. �1�� as the rates for the
mutual hopping between organic sites. It is to be expected
that the specific rate taken for the hopping between the elec-
trode sites and the sites in the first and last organic layers has
almost no influence on the final current-voltage characteris-
tics of the device, as long as this hopping rate is large enough
to establish equilibrium between these sites.

In this paper only symmetric devices are considered, i.e.,
devices with equal injection barriers, �, at the injecting and
collecting electrodes, but our methods can just as well be
applied to asymmetric devices. The injection barrier is de-
fined as the distance in energy between the Fermi level in the
electrode and the top of the Gaussian DOS. The energy of
each organic site is therefore equal to the sum of a random
on-site contribution, drawn from a Gaussian DOS with a
width equal to �, and an offset due to the injection barrier,

g�E� =
1

�2��a3
exp
−

�E − ��2

2�2 � , �2�

plus the electrostatic energy contributions ei and eim,i due
to the applied field and the space charge and due to the
image-charge effect, respectively. The Fermi energy in the
collecting electrode is taken as the zero-energy reference
value, so that the electrostatic potentials at the two electrode
planes are given by e�ix=1�=eV and e�ix=mx�=0, where
V is the applied driving voltage �bias�. The contribution to
the electrostatic potential due to the space charge is calcu-
lated using the Poisson equation from the laterally averaged
charge-carrier density in each layer ix. As a consequence of
this approximation, ei depends only on the layer index ix.
Also the image-charge contribution depends only on the dis-
tance of the site to each of the electrodes. It is given by

eim�ix� = −
e2

16��0�ra
 1

mx − ix
+

1

ix − 1
� �3�

at the organic sites. Here e is the unit charge, �0 the vacuum
permeability, and �r the relative dielectric constant of the
organic material. There is no image-charge contribution at
the electrode sites. Equation �3� is the first-order term in an
expansion in which repetitive images are taken into
account.37 For the device thicknesses considered, no signifi-
cant change of the results was obtained when taking higher-
order images into account.

The occupational probabilities pi for the organic sites are
obtained by solving the Pauli master equation
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�pi

�t
= − �

j�i,jx�1,mx

�Wijpi�1 − pj� − Wjipj�1 − pi��

− �
j�i,jx=1,mx

�Wijpi − Wji�1 − pi�� = 0, �4�

where the first sum is related to hopping between organic
sites and the last term to hopping from and to the electrodes.
The factors 1− pi in this first sum account, in a mean-field
approximation, for the fact that only one carrier can occupy a
site due to the high Coulomb penalty for the presence of two
or more carriers. The second sum describes the hopping from
sites of the outermost organic layers to the electrode sites
�first term between square brackets� and the hopping from
electrode sites to the outermost organic layers �second term�,
where we assume that there are always charges on the elec-
trode sites ready to hop to the organic sites and that the
electrode sites can always accept a charge from the organic
sites. We take into account hopping over a maximum dis-
tance of �3a, which is sufficient for the values of a and 	
that we will consider �see Sec. III�.

In order to solve the Pauli master equation for the occu-
pational probabilities pi, we use an iterative procedure simi-
lar to the one described in Refs. 13 and 20. From these oc-
cupational probabilities we can calculate the current through
the device. At each organic site i, we define a local particle
current Jp,i in the direction of the collecting electrode

Jp,i = � �Wijpi�1 − pj� − Wjipj�1 − pi�	 , �5�

where the summation is over all sites j for which jx� ix. The
total electrical current density is then given by

J =
1

mymz
� eJp,i

a2 , �6�

where the summation is over all my �mz sites within any
plane parallel to the electrodes within the device.

As the electrostatic potential is determined by the charge
distribution, whereas the charge distribution can only be cal-
culated if the potential is known, both should be determined
self-consistently. To obtain the self-consistent solution we
use the following iteration procedure:

�1� Start with a potential  that linearly decreases from
injecting to collecting electrode.

�2� Solve the master equation, Eq. �4�.
�3� Update the electrostatic potential, which has changed

due to the change of the space charge.
�4� Recalculate all the hopping rates Wij using Eq. �1�.
If the total charge and the current in the device have con-

verged, the procedure stops, otherwise the procedure starts
again at the second step.

B. One-dimensional continuum model

We will compare the J�V� curves obtained from the 3D
master-equation model discussed in Sec. II A to the J�V�
curves obtained from a 1D continuum drift-diffusion model.
The current density in this model is given by

J = n�x�e��x�F�x� − eD�x�
dn�x�

dx
, �7�

where n�x� and F�x� are the local charge-carrier density and
electric field, respectively, which are related by the Poisson
equation, dF /dx= �e /��n�x�. The dependence of the local
mobility, ��x�=��T ,n�x� ,F�x��, on the temperature, the
charge-carrier density, and the electric field is taken from the
parametrization given for the EGDM in Ref. 13. The local
diffusion coefficient, D�x�, is obtained from the local mobil-
ity by using the generalized Einstein equation.38 We note that
the expressions given in Ref. 13 for the mobility within the
EGDM were obtained from essentially the same 3D master-
equation model as discussed above, but then for a system
with a uniform carrier density and electric field and including
also periodic boundary conditions along the x direction.
Therefore, any difference between both approaches will be
exclusively due to a failure of taking the actual nonuniform
3D current density into account in the 1D model.

For efficiently solving the 1D drift-diffusion-Poisson
problem within the EGDM, we have used an extended ver-
sion of the numerical method described recently by van
Mensfoort and Coehoorn.25 Within the standard form of that
method, described in Ref. 25, the carrier densities at the elec-
trode planes are assumed to be constant �voltage indepen-
dent� and given by the condition of local thermal equilibrium
between the metal and the organic layer. The density of car-
riers at the contact with the metal, nc, is then given by

nc = �
−�

� g�E�
1 + exp�E/�kBT��

dE , �8�

with the DOS g�E� given by Eq. �2�. When the injection
barrier is sufficiently small, the large carrier density in the
organic layer near the injecting electrode will give rise to a
local drift contribution of the particle current toward the in-
jecting electrode. Under these conditions, the electrostatic
field near the interfaces is the result of a net electrostatic
interaction that is the overall sum of the individual contribu-
tions from the charges and image charges of many electrons.
The standard 1D model treats this in a fair way, viz., by
solving the 1D Poisson equation assuming a laterally homo-
geneous charge density. On the other hand, when the injec-
tion barrier is sufficiently large, so that the local drift contri-
bution to the particle current is directed away from the
injecting electrode, the predominant contribution to the elec-
trostatic field near the electrode is due to the image charge of
the injected carrier itself. In order to be able to account for
such cases, we have extended the 1D model presented in Ref.
25 by making use of an image-charge-corrected barrier
height of the form first suggested by Emtage and O’Dwyer,27

�� = � − e� eFc

4��0�r
, �9�

with Fc the �positive� electric field at the contact plane. Fc
and �� are determined self-consistently using an iterative
procedure. When Fc�0, the full injection barrier � is used.
We show in Sec. III that this method of taking the image-
charge potential into account in 1D calculations of J�V�
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curves leads to a surprisingly good agreement with the re-
sults of the 3D master-equation model, provided that the
transport is well in the ILC regime.

III. RESULTS

In Fig. 1 we display the room-temperature current density
as a function of applied voltage, as obtained from the 3D and
1D calculations described in Sec. II. The results are given for
different injection barriers, �, equal to 0, 0.33, 0.67, and 1
eV. The lattice constant has been taken equal to a=1.6 nm, a
value found in Ref. 13 from modeling the transport in a
hole-only device based on the PPV derivative OC1C10-PPV
�poly�2-methoxy-5-�3� ,7�-dimethyloctyloxy�-p-phenylene
vinylene��. The four plots show the results for two values of
the dimensionless disorder parameter, �̂=3 and 6, corre-
sponding to �=75 and 150 meV at room temperature, re-
spectively, and for two layer thicknesses L, indicated in the
figures as 22 and 102 nm. The actual thicknesses are 13
layers �22.4 nm� and 63 layers �102.4 nm�, respectively. The
attempt-to-jump frequency, �0, is chosen such that at vanish-
ing injection barrier, the current density as obtained from the

3D model is equal to 1 A /m2 at V=10 V for the 102 nm
devices. This value of �0 and the corresponding values of the
mobility at zero field in the low-density Boltzmann limit
used within the 1D-model calculations are given in the figure
caption and will be used throughout the rest of the paper.
Like in Ref. 13, we take the wave-function decay length,
	−1, equal to a /10. The lateral grid size is 50�50 sites. The
relative accuracy of the results is approximately 10%, which
was concluded by carrying out calculations for different lat-
eral grid sizes and disorder realizations.

A remarkably good agreement is obtained between the 3D
master-equation results �symbols� and the 1D continuum-
model results �lines�, except for the thin �L=22 nm� device
with strong disorder ��=150 meV� at voltages exceeding 1
V �Fig. 1�d��. For the lowest injection barriers, �=0 and 0.33
eV, the devices are in the SCLC regime and the current is
almost independent of the size of the injection barrier. At
small voltages, the current-voltage curves are linear �ohmic�,
as expected when the transport is predominantly due to
charge-carrier diffusion.25 The slope of the current-voltage
curve �on a double-log scale� increases with increasing volt-
age, eventually to a value that exceeds the value of two that
would be obtained for the case of a constant mobility in the
presence of a drift contribution only �Mott-Gurney relation-
ship�. This can be viewed as a result of the carrier-density
dependence and the electric-field dependence of the
mobility.13,25 When the injection barrier increases the ILC
regime is entered and the voltage dependence becomes much
more pronounced. For high injection barriers the current in
the 22 and 102 nm devices is almost the same for equal
injection barriers if the voltage is scaled with the device
thickness. For the case of �=75 meV this happens for injec-
tion barriers �=0.67 and 1 eV. For the case of �
=150 meV, space-charge effects are still dominant at an in-
jection barrier of �=0.67 eV, the reason being that a higher
value of � leads to a higher carrier density at the interface
than for �=75 meV �the tail states of the Gaussian DOS are
filled to a larger extent�, and hence to stronger limitation of
the current by space-charge effects. We remark that because
of convergence problems we were not able to obtain master-
equation results for �=1 eV for the 102 nm device.

We analyze the situation in more detail with the help of
Fig. 2, which shows a comparison of the calculated injection-
barrier dependent current density in the 22 nm devices at a
bias of 2 V and room temperature as obtained from the 3D
master-equation approach and as obtained from various other
approaches, for �=75 meV �Fig. 2�a�� and �=150 meV
�Fig. 2�b��. We first focus on the results in the SCLC regime.
For very small values of �, the 1D calculations were carried
out without taking the image-charge effect into account since
the field is then directed toward the injecting electrode �Fc
�0 as explained in Sec. II B�. Calculations including the
image-charge effect were only carried out for ��0.20 eV
and ��0.35 eV for �=75 and 150 meV, respectively, as
indicated by the arrows in Fig. 2. For these cases the inclu-
sion of the image potential leads to an effective barrier de-
crease �Eq. �9��. Actually, for smaller values of � the inclu-
sion of the image potential would lead to a small effective
barrier increase, due to charge trapping in the potential well
near the interface, deepened by the image potential. As a
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FIG. 1. �Color online� Dependence of the current density �J� on
the driving voltage �V� for devices with thicknesses of L=102 and
22 nm and disorder strengths of �=75 and 150 meV, as indicated
in �a�–�d�. The results are for room temperature and lattice constant
a=1.6 nm. The values used for the attempt-to-jump frequency, �0,
are 3.5�1013 s−1 for devices with �=75 meV and 1.4�1016 s−1

for devices with �=150 meV. These values correspond to a mobil-
ity prefactor �0 �as defined in Ref. 13� equal to 4.8�10−14 and
1.1�10−16 m2 /V s, respectively. Symbols: results obtained from
the 3D master-equation approach for different injection barriers �:
0 eV �downwards pointing triangles�, 0.33 eV �circles�, 0.67 eV
�upwards pointing triangles�, and 1 eV �squares�. In �b� no con-
verged master-equation results for �=1 eV could be obtained.
Solid lines: results obtained from the 1D continuum drift-diffusion
model as explained in the main text.
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result, the actual current density would be smaller than as
predicted from the 1D model used here. One may estimate
the effect by extrapolating the 1D current-density curve as
obtained with the image potential to �=0 eV. The extrapo-
lated current density is a factor of �1.5 and �4.5 smaller
than the 1D current density given in Fig. 2 for the cases �
=75 and 150 meV, respectively. For �=75 meV the agree-
ment between the 3D master-equation and 1D continuum-
model results is very good, with an underestimation of the
current density by the 1D continuum model in the SCLC
regime by only a factor of about 2. However, for �
=150 meV the 1D continuum model underestimates the cur-
rent density in the SCLC regime by a factor of about 4. We
note that the extrapolated current densities mentioned above,
including the image potential, yield a stronger underestima-
tion of the current densities in the SCLC regime. We may
thus conclude that the omission of the image potential in the
1D continuum model accidentally corrects part of an intrin-
sic underestimation of the current density by the 1D model.
In Sec. IV, we will investigate the origin of this underestima-
tion.

With increasing injection barrier we see in Fig. 2 a tran-
sition from the SCLC to the ILC regime, with finally an
Arrhenius behavior, J�exp�−� /kBT� of the current density.
In the ILC regime the inclusion of the image potential is of

crucial importance, which can be seen from the continuation
of the 1D continuum-model calculations without image po-
tential �dashed lines�, which predict a far too low current. For
�=75 meV the agreement between the 3D master-equation
and the 1D continuum-model results in the ILC regime is
excellent. For �=150 meV the 1D continuum model under-
estimates the current density in the ILC regime by a factor of
about 8. The origin of the underestimation of the current
density by the 1D model in the SCLC and ILC regimes is
investigated in Sec. IV.

IV. THREE-DIMENSIONAL STRUCTURE OF THE
CURRENT DISTRIBUTION: CONSEQUENCES

FOR DIFFERENT MODELS

In order to obtain a better insight in the effects that cause
the discrepancies between the 3D master-equation and the
1D continuum-model results, we have studied the three-
dimensional structure of the current distribution. Figure 3
shows the room-temperature current-density distribution for
the 22 nm device at a bias of V=2 V, an injection barrier
�=1 eV, for �=75 �Figs. 3�a� and 3�b�� and �=150 meV
�Figs. 3�c� and 3�d��. Figures 3�a� and 3�c� show the current
distribution as viewed from the side, whereas Figs. 3�b� and
3�d� show views from the injecting to the collecting elec-
trode. The local current density has been calculated by sum-
ming for each site in a box of 13�50�50 sites the net
currents to the nine sites in the adjacent layer to which we
allow hopping and attributing this sum to this site, according
to Eq. �5�. We have used the same disorder realization for
�=75 and 150 meV, apart from an obvious factor of 2. The
figures reveal that the current density is strongly filamentary
for �=150 meV and already weakly filamentary for �
=75 meV. Such filamentary structures in the current distri-
bution have been reported before20–24 and are caused by per-
colation effects, which increase with increasing disorder. We
have also investigated the current distributions for zero in-
jection barrier and found a less pronounced but still clear
filamentary structure, showing that this structure is enhanced
by the injection barrier, but that its existence does not require
a finite injection barrier.

Clearly, the filamentary structure of the current distribu-
tion means that almost all the current flows through a rela-
tively small number of sites. Since the 1D continuum model
is based on the EGDM, in which the bulk effects of the
filamentary structure of the current have been properly taken
into account,13 it can be expected that the 1D continuum
model works properly for thick devices. Indeed, Figs. 1�a�
and 1�b� shows that for the device with L=102 nm device
the agreement between the 3D master-equation and 1D
continuum-model results is very good. As long as the typical
length scale of the spatial structure of the current distribution
is small compared to the device thickness, one can speak
about a “local” mobility that can successfully be used in 1D
continuum models. However, for devices with a thickness of
the order of or smaller than this typical length scale, the
concept of a local mobility breaks down.23 The presence of
current filaments from the injecting to the collecting elec-
trode then leads to a higher net current than obtained with a
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FIG. 2. �Color online� Dependence of the current density �J� on
the injection barrier ��� for different models. The displayed results
are for devices with disorder strengths of �a� �=75 and �b� �
=150 meV, device thickness L=22 nm, driving voltage V=2 V,
room temperature, and lattice constant a=1.6 nm. The other pa-
rameters are the same as in Fig. 1. Arrows indicate the points where
the electric field at the injecting electrode switches sign within the
1D continuum model.
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1D continuum model; the effect becoming larger for larger
electric field. This is the reason for the discrepancies found
in Figs. 1�d� and 2�b� found for L=22 nm and �
=150 meV between the 3D master-equation and 1D
continuum-model results, both in the SCLC and ILC re-
gimes. Indeed, one can see from Fig. 3 that the typical length
scale of the structures in the current distribution is roughly of
the order of 10 nm. Since the filamentary structure is less
pronounced for smaller disorder, the agreement between the
3D master-equation and 1D results in Figs. 1�c� and 2�a�
found for �=75 meV is much better.

In the remainder of this section, we discuss to what extent
the filamentary nature of the current density in the ILC re-
gime is properly taken into account in the Burin-Ratner
model34 and the Arkhipov model.31 The above point of view
about the underestimation of the current by the 1D con-
tinuum model is supported by an analysis of the current den-
sity using the BR model.34 Within that model, it is assumed
that the total current is a simple sum of independent contri-
butions from linear �one-dimensional� filaments that start at
all injecting sites. These contributions can be obtained by
solving a 1D master equation for a chain of sites with ran-
dom Gaussian disorder. We have used the exact solution for
the contribution to the current density from a filament at the
point �iy , iz�, given by Eq. 5 in Ref. 34

J�iy,iz�

=

exp−
e�

kBT
�

exp−
e�

kBT
� + 2 �

ix=2

mx−1

expE�ix� − eaixF + eim�ix�
kBT

� J0,

�10�

with the energies E�ix� taken randomly from a Gaussian DOS
with width � and with �ix� the image potential at site ix,
given by Eq. �3�. In contrast to the original expression in
Ref. 34 this expression takes into account the finite thickness
of the device. The current density is expressed relative to J0,
defined as

J0 �
e�0

a2 exp�− 2	a� , �11�

which is the current density that would be obtained from a
master-equation calculation for a system with all sites fully
occupied �pi=1�, in the large-field limit, neglecting the
�1− pi� factors that prohibit double occupation �cf. Eq. �4��.
The total current density is then obtained by averaging the
contributions from a sufficiently large number of points
�iy , iz�. These contributions are obtained by applying Eq. �10�
repeatedly for a large ensemble of random sets of energies
E�ix� and are thus assumed to be uncorrelated. The assump-
tion of 1D filaments, made within the BR model, is consis-
tent with the observation in Fig. 3 of straight filaments close
to the injecting electrode. We note that Eq. �10� is derived by
assuming instead of the Miller-Abraham hopping rate Eq.
�1b� a hopping rate

FIG. 3. �Color online� Three-dimensional representation of the
relative local current density, given by Jrel,i=Ji /Jav, with Ji the ab-
solute local current density given by Eq. �5� and Jav the average
local current density in the device. The displayed results are for
devices with disorder strengths of ��a� and �b�� �=75 meV and ��c�
and �d�� �=150 meV, device thickness L=22 nm, driving voltage
V=2 V, injection barrier �=1 eV, room temperature, and lattice
constant a=1.6 nm. In �a� and �c� the device is viewed from the
side with the injecting electrode at the bottom, whereas �b� and �d�
give views from the injecting to the collecting electrode. The local
current density is coded with a color and transparency, with the
coding scheme indicated at the bottom. The lateral grid size used is
50�50 sites. The boundaries of the device are depicted by a white
bounding box.
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Wij =
�0

1 + exp
Ej − Ei

kBT
� . �12�

We checked that the differences between the two hopping
rates only lead to minor differences in the final results.

The current density as predicted from the BR model is
indicated in Fig. 2 �line with plusses�. For ��0.8 eV, the
model provides a quite good approximation to the results
of the full 3D master-equation results for large disorder
��=150 meV�, so that it may be concluded that the discrep-
ancy with the 1D continuum-model results for large injection
barriers is indeed the consequence of a neglect of transport
via rare very easy pathways. Figure 2 also shows that the BR
model predicts a too high current density for injection barri-
ers smaller than �0.5 and �0.7 eV for �=75 meV and �
=150 meV, respectively. This may be attributed to the fact
that the BR model neglects the effects of space charge, as
may be concluded from the results of the 3D master-equation
calculations with the space-charge potential switched off
�Fig. 2, open circles�, which follow the BR results to lower
values of �.

Another consequence of the filamentary nature of the cur-
rent density is the occurrence of a statistical variation of the
total current through a given surface area. As an example,
Fig. 4 shows the distributions of the current density through
80�80 nm2 devices �i.e., 50�50 sites� of the type studied
in Fig. 3, for �=1 eV, and with �=75 meV �Fig. 4�a�� and
�=150 meV �Fig. 4�b��, obtained from 3D master-equation
calculations �light-gray bars� and from the BR model �black
bars�. For �=75 meV, the statistical variations are moder-
ate. The width of the distributions is limited to approximately
40% of the average current density. The BR distribution is
clearly shifted to smaller current densities as compared to the
master-equation distribution. We attribute this to the limita-
tion to one dimension of hops in the BR model, which leads
to lower currents than when 3D hopping is allowed. For �
=150 meV, the statistical variations are very large. The
width of the distributions is comparable to the peak current
density, and the strongly asymmetric distributions give rise
to an average current density that is equal to more than twice
the peak current densities �note the log scale for the x axis�.
The relative shift of the BR distribution to smaller current
densities is significantly larger than for �=75 meV.

Whereas the BR model yields already at the relatively
high fields considered in Fig. 2 �108 V /m� current densities
that are lower than the 3D master-equation results, it may be
expected that the model breaks down even more clearly at
small fields. Trajectories containing side jumps are then ex-
pected to yield even more important contributions to the cur-
rent density. This is confirmed by the results given in Fig. 5.
For devices with �=75 meV, the figure displays the electric-
field dependence of the injection-limited current density as
obtained from the 3D master-equation model, the 1D-
continuum model, the BR model, and the Arkhipov model
�discussed later in this section�. The injection barrier is �
=1 eV. The temperature is varied from 300 to 150 K, cor-
responding approximately to �̂=3 and �̂=6, respectively. It
has already been established from Fig. 1 that the voltage

dependence of the current density as obtained from the 1D
continuum model is in fair agreement with the results from
the 3D master-equation model. Therefore, we regard these
results �solid curves� as a benchmark. The figure shows that
the BR model underestimates the current density at small
fields. This indeed suggests that at smaller fields, nonlinear
trajectories, which are neglected within the BR model, con-
tribute significantly to the current density.

The 1D continuum model yields the following expression
for the current density in the ILC regime:
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FIG. 4. Probability distribution of the current density J. The
displayed results are for devices with disorder strengths of �a� �
=75 meV and �b� �=150 meV, device thickness L=22 nm, driv-
ing voltage V=2 V, room temperature, lattice constant a=1.6 nm,
and injection barrier �=1 eV. The lateral grid size is 50�50 sites.
Equally sized bins on a logarithmic scale have been used and the
normalization is such that the sum of the lengths of the bars is equal
to 1. Light-gray bars: results obtained from the 3D master-equation
model. Black bars: results obtained from the Burin-Ratner model.
For devices with disorder strength of �=75 �150� meV, 656 �62�
samples were used for the 3D master-equation model and 3200
�6400� samples for the Burin-Ratner model. Arrows indicate the
corresponding average current densities, which could be very accu-
rately determined, except for the master-equation result for �
=150 meV, where an error bar indicates the uncertainty.
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J = enc��nc,F�F �
e

a3exp
−
e���F�

kBT
+

1

2
�̂2���0,F�F

=
e

a3exp
−
e���F�

kBT
+

1

2
�̂2�a2�0ec1

�
exp�− c2�̂2�

��0,F�
��0,0�

F

� exp
−
e���F�

kBT
+ 1

2
− c2��̂2� f�F�

eaF

�
J0, �13�

with ���F� as given by Eq. �9�. Use has been made of the
fact that the barrier is sufficiently large, so that transport is in
the Boltzmann regime; Eq. �A2� in Ref. 15 can therefore be
used to relate nc to ��. Also the expressions for the tempera-
ture and field dependence of the mobility, given in Ref. 13,
have been used, with the approximation c1=1.8�10−9

�exp�−2	a�=exp�−20�, with c2=0.42 and with f�F� a fac-
tor that expresses the field dependence of the mobility

f�F� � exp�0.44��̂3/2 − 2.2�
�1 + 0.8 eaF

�
�2

− 1�� .

�14�

For the devices studied, the maximum of the field scale used
in Fig. 5 corresponds to eaF /��2. It follows from Eqs. �13�
and �14� that at all temperatures considered approximately
30% of the increase of the current density �on a log scale�
with the field, observed in Fig. 5, is due to the field depen-

dence of the mobility. The remainder of the effect is due to
the energy-barrier lowering with increasing field and to the
linear �eaF /�� factor in Eq. �13�.

The dashed-dotted curves in Fig. 5 give the current den-
sity as obtained from the 1D continuum injection model by
Arkhipov et al.31 Within this model, it is assumed that the
current density can be written as an integral over contribu-
tions due to hops over variable distances from the electrode
to sites at distance x0�a and with energy E� with respect to
the Fermi level in the electrode. The contribution of each hop
is weighed by the escape probability wesc�x0� out of the
image-potential well in which the charge carrier resides after
the first hop, toward the bulk of the device

J = e�
a

�

dx0�
−�

�

dE�W�x0,E��wesc�x0�g�E� − e� + ex0F

− eim�x0�� , �15�

with W�x0 ,E� the Miller-Abrahams hopping rate given by
Eq. �1� and with wesc�x0� given by

wesc�x0� =

�
a

x0

dx exp��− exF + eim�x��/�kBT�	

�
a

�

dx exp��− exF + eim�x��/�kBT�	
. �16�

It may be seen from Fig. 5 that the Arkhipov model yields a
field dependence of the current density that is quite close to
that obtained from the 1D continuum model �and from the
3D master-equation model�, but that the temperature depen-
dence of the current density is much smaller. We tentatively
attribute this to the fact that in the expression for the escape
probability �Eq. �16�� the effect of disorder is neglected. The
percolative nature of the escape process is expected to be
more strongly temperature dependent than as predicted by
Eq. �16�, just as the mobility of disordered materials is more
strongly temperature dependent than that of ordered materi-
als. An earlier test of the validity of the Arkhipov model,
using Monte Carlo calculations, has not been able to reveal
this inadequacy of the model, as the analyses have been car-
ried out only for relatively high temperatures.32

V. SUMMARY AND CONCLUSIONS

We have performed a three-dimensional modeling study
of the single-carrier transport in devices that consist of a
single layer of an organic semiconducting material with a
Gaussian distribution of site energies with standard deviation
�, sandwiched in between two metallic electrodes. The
voltage-dependent current density was obtained by solving
the Pauli master equation corresponding to the related hop-
ping problem, taking the effects of the space charge, the
image potential, a finite injection barrier, and the full depen-
dence of the hopping rates on temperature, carrier density,
and electric field into account.

The calculations reveal that the current density can be
strongly filamentary and that the current filaments become
more pronounced with increasing disorder parameter �̂

FIG. 5. �Color online� The current density �J in units of J0 as
given by Eq. �11�� as function of the electric field �F� for different
temperatures and four different models.
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=� / �kBT�, decreasing layer thickness, and increasing injec-
tion barrier. Visualizations of the 3D current density show
that these filaments become straight near the injecting elec-
trode when the injection barrier is large, for high fields and
for strong disorder, as assumed in a 1D master-equation
model by Burin and Ratner.34 In that limit the nonuniformity
of the current density is found to give rise to wide distribu-
tions of the current density in an ensemble of nanometer-
scale devices. The average current density can be much
larger than the peak value in the distribution due to the oc-
currence of a small fraction of devices with extremely high
current densities.

A quantitative analysis of the results has been given by
making a comparison to the results from a 1D continuum
drift-diffusion model, which extends an earlier developed
model25 by including the image-charge effect. The voltage-
dependent current-density curves as obtained from both
models show a remarkably good agreement �Fig. 1�, except
for large voltages, disorder parameters, and injection barri-
ers, where the full 3D calculations reveal an enhanced cur-
rent density. This is attributed to the effects of rare easy
pathways for the filamentary current density, as confirmed in
Sec. IV from an analysis using the Burin-Ratner model.

We conclude that the 3D master-equation model devel-
oped has provided valuable insight in the degree of validity
of an also newly developed 1D continuum model. The limi-
tations of the 1D model arise under conditions at which the
current density becomes highly nonuniform. However, 1D

continuum drift-diffusion models will remain important as a
computationally efficient tool for evaluating the materials
and device properties of OLED-type devices. In our view,
future research toward the improvement of such models
should focus on the three following subjects: �i� the explicit
consideration of the effect of current filaments, �ii� the de-
velopment of an approach to the image-potential contribution
in the SCLC regime that more consistently takes the space
charge near the electrodes into account, and �iii� the possible
effects of positional disorder, in particular on the injection-
limited current density.
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